Exploring the Impact of VR Integration on ESL Learners’ English Verbal Communication Skills: A Case Study in a Malaysian High School

Kumutha Raman
Universiti Kebangsaan Malaysia, 43600 Bangi, Malaysia
INTI International University Nilai, 71800 Nilai, Malaysia
Corresponding Author: kumu0905@gmail.com

Harwati Hashim
Universiti Kebangsaan Malaysia, 43600 Bangi, Malaysia
Email: harwati@ukm.edu.my

Hanita Hanim Ismail
Universiti Kebangsaan Malaysia, 43600 Bangi, Malaysia
Email: hanitaismail@ukm.edu.my

Received 04/03/2024 Accepted: 07/14/2024 Published:07/28/2024

Abstract
Today’s young people spend a lot of time on gaming and mobile devices, which limits their social interactions and ability to communicate well. Integrating Virtual Reality technology in language learning provides a simulated or gaming-like environment for students to practice their communication skills. The main aim of the study is to explore the impact of integrating VR technology into the learning of English verbal communication skills among ESL students. Essentially, this study provides evidence-based insights into the potential of VR technology to improve learners’ essential verbal communication skills. Thus, the aim was addressed through the research question on how the use of the ImmerseMe VR platform impacts the development of ESL learners’ English verbal communication skills, particularly fluency and accuracy while highlighting the evidence of the impact on participants’ communicative competence during speaking assessments. The study focused on 15 Form 6 students from a Chinese Independent High School in Malaysia, exploring their encounters with VR-integrated lessons. This study investigated how the ImmerseMe VR platform affects ESL learners’ English verbal communication skills and evaluates its effectiveness in enhancing language proficiency and communicative competence in ESL classrooms. The data were collected through ImmerseMe auto-generated report and speaking assessment. The quantitative analysis reported significant improvement in learners’ skills following VR intervention, highlighting VR’s potential as a useful tool for language learning. This research shows how VR platforms like ImmerseMe can improve language proficiency and communicative competence among learners while providing valuable insights into innovative teaching methods for ESL classrooms.

Keywords: English as a Second Language Learners, ImmerseMe, Verbal Communication skills, Virtual Reality

Introduction

In the quest to achieve Sustainable Development Goal (SDG) 4: Quality education, technology integration has emerged as a critical factor in transforming educational practices worldwide. Notably, the pervasion of technology now extends beyond instructional delivery and assessment approaches, giving rise to educators applying innovative methods and designing many educational digital tools and applications to enhance learning outcomes (Haleem et al., 2023; Sim & Ismail, 2023).

In Malaysia, the main goal of teaching English curriculum is to produce communicative competence among the learners (Ghafar et al., 2023). Teachers have used various communicative language education techniques to significantly impact learners’ communicative competence. Relying solely on textbooks and online reference materials is inadequate for ESL learners to effectively acquire and authentically apply the language they learn in the classroom to real-world communicative situations (Mandarsari, 2023). However, studies have also revealed that language teachers emphasize the memorization of vocabulary items and grammatical rules as well as structures of the target language (Narayana, 2023; Boonraksa & Naisena, 2022). They do not prioritize teaching methods that demonstrate the practical application and contextual understanding of language forms, which hinders learners’ ability to use the language in real-life scenarios effectively. As a result, these approaches fail to help teachers achieve their primary objective and limit learners’ communication skills to classroom settings only.

There is a strong emphasis on employing effective techniques and resources to ensure language learning is relevant and practical for real-life communication situations (Ikhtiyorovna, 2023). Research indicates that incorporating genuine materials into learning enhances language precision and fluency. However, the choice of authentic materials must align with the contemporary environment and context of the students. For example, modern learners, such as Generation Z, prefer digitalized resources over traditional textbooks (Annus et al., 2023; Pandey et al., 2023). Generation Z, born between 1996 and 2012, are characterized as digital natives, having grown up surrounded by technology, including the internet, social media, and mobile devices since childhood. This tech-savvy generation is adept at gathering and comparing various sources of information and seamlessly blending virtual and real-world experiences (Bhalla et al., 2021). Consequently, modern educational practices of the digital age have integrated and utilized emerging technologies like Cloud Computing, Mobile Technology, Massive Open Online Courses (MOOCs), Games and Gamification, Augmented Reality, and Virtual Reality, all tailored to meet the needs and preferences of Generation Z (Garlinska et al., 2023).

Virtual Reality (VR) has been gaining more attention in recent years for its potential benefits to users. The most common example of VR is in games where the players experience the characters or avatars in a virtual environment (Berkman & Akan, 2024). However, VR is not used solely in games; it also offers a unique experience of immersion in the virtual learning context. VR technology has been used in almost all fields, such as the military, healthcare, business, sports, media, entertainment, and education. VR offers extensive advantages for both educators and learners by serving as a platform that enables learners to engage in virtual interactions (Yildirim et al., 2020). Primarily, it serves as a platform that offers learners opportunities to engage in virtual communications. Moreover, VR technology has dramatically changed language learning by immersing learners in authentic situations for experiential learning (Lan, 2020). This approach can address impractical learning, limited interaction with native speakers, lack of hands-on experience, and low motivation or interest (Pellas et al., 2023). Traditional teaching methods may become
repetitive and unengaging, but this alternative offers a solution. Numerous companies have developed engaging VR applications for language learning, including ImmerseMe, VirtualSpeech, Mondly, Nearpod, FluentU, Alelo, and VR4LL.

Therefore, incorporating VR into ESL teaching significantly enhances learners’ experiences by offering authentic communication opportunities. In virtual reality, learners engage in simulated real-life scenarios where they interact with lifelike characters, akin to conversing with native speakers. For instance, VR provides experiences learners may not encounter in real life, such as shopping, socializing with friends, attending interviews, and guiding tours, by allowing them to immerse themselves in authentic situations. Hence, this study aims to investigate the impact of integrating VR-based language learning in English as A Second Language (ESL) classrooms for the development of verbal communication skills among secondary school students. The results of the study contribute to both practical and pedagogical significance. The study provides evidence-based insights that can guide educators in adopting effective technological tools for language instruction. This can lead to more engaging and effective language learning experiences, ultimately improving students’ communication skills. Moreover, the study offers valuable information on the role of immersive technology in language education. This can help educators understand the potential of VR to create authentic, interactive learning environments that mimic real-life communication scenarios, thus better preparing students for practical language use beyond the classroom. On that note, the research objectives of this study are as follows:

1. To investigate the efficacy of ImmerseMe VR platform in developing ESL learners’ English verbal communication skills, focusing on fluency and accuracy.
2. To evaluate the extent to which VR-based learning of English enables the development of participants’ verbal communication skills in English during the speaking assessment.

The objectives of this study are to address the following research questions:

1. How does the implementation of the ImmerseMe VR platform impact the development of ESL learners’ English verbal communication skills, particularly in terms of fluency and accuracy.
2. To what extent does VR-based learning of English verbal communication skills enable the development of participants’ communicative competence in English, during the speaking assessment?

Literature Review

The literature review in this study critically analyses evaluates and synthesizes research findings, theories, and practices by scholars and researchers related to Virtual Reality in enhancing communicative skills.

Communication Skills

Effective communication enhances personal efficiency and facilitates networking and collaboration with others in various settings. It also plays a vital role in motivating individuals to perform better. Besides creating better interpersonal relationships, good communication also creates a conducive environment for understanding and addressing resistance to change (Sen, 2007). Kumar and Latha (2011) categorized the forms of communication into seven, namely verbal communication (involves communication through spoken or written words), non-verbal communication (takes place through body language, facial expressions, gestures, posture, and eye contact), intrapersonal communication (occurs within oneself, encompassing internal thought
processes, self-reflection, and self-talk), interpersonal communication (involves the communication between two or more individuals in a face-to-face or virtual setting), extrapersonal communication (involves interactions between individuals and their external environment or societal structures), mass communication (involves transmitting information to a large audience through mass media channels), and media communication (involves mediating through various forms of mass media). The definition of communication skills remains unchanged to this day. In a recently published book on Effective Communication, it was stated that communication involves exchanging or sharing thoughts and information between individuals (Hofmeister, 2024). The author emphasized that effective communication is carefully planned and executed, ensuring that both the sender and the recipient have a mutual understanding of the message.

According to the Malaysian Ministry of Education (2015), effective communication is crucial for expressing thoughts and ideas across different forms, contexts, and purposes. Effective communication involves utilizing both verbal and nonverbal communication skills. Communication skills are the tools to remove barriers such as different cultures, different expectations, different experiences, different perspectives, or different communication styles to communicate effectively (Ting-Toomey & Dorjee, 2018). These are important life skills that enable individuals to engage in better conversations in social settings and effectively convey their ideas at work. Besides, language learners who possess skills like strong vocabulary retention, effective communication techniques, and the capacity to understand and utilize language structures in context would exhibit greater language proficiency and confidence in expressing themselves in the target language (Utami & Wahyudin, 2022). Thus, mastering clear articulation of verbal communication empowers comprehension, collaboration, and mutual understanding among individuals from distinct linguistic and cultural backgrounds. From the past author Cummins (1994) to the latest authors Liang (2024), Rivers (2024) and Hidayat et al. (2023), there has been a consistent emphasis on the pivotal role of clear articulation of verbal communication. However, there are attributing factors such as individual differences in learning ability, varied cognitive load, unfamiliarity with complex vocabulary and pronunciation limited exposure to the target language, a lack of practice opportunities, or challenges in processing linguistic input from native speakers and other external factors which could delay the process of language learning development (Yudintseva, 2023, Bailey et al., 2021; Grieve et al., 2021; Alrasheedi, 2020; Aydin et al., 2020; Nambiar et al., 2020, Yang et al., 2020).

Virtual Reality and English Language Teaching

In recent years, as technology involves drastic transformations, the definition of VR has also faced some alterations. According To NASA (2016), VR generates the appropriate cues to users’ perceptual and cognitive systems so that their brains can interpret those cues as objects ‘out there’ in the 3D world. Fernandez (2017) simplified the concept: VR provides immersion in realities through sight (using visualization goggles), touch (wearing haptic gloves), and hearing (using headphones). Lowood (2021) modifies the term to the use of computer modeling and simulation that allow a person to interact with an artificial 3D visual or another sensory environment through interactive devices. Presently, with the use of Head Mounted Displays (HMDs), VR technology creates immersive and interactive educational experiences by simulating real-world events (Marougkas et al., 2024). It offers hands-on learning opportunities that are difficult to achieve in a traditional classroom setting.
Numerous ways have been adopted and adapted to teach and learn the English language. However, in learning English, learners often face challenges in grasping command of the language primarily due to a lack of exposure and immersion in the language being learned (Pun et al., 2024, Abdullayev & Kholbekova, 2023, Abdullah Kamal, 2020). Research has shown that second language learners who receive sufficient exposure to the target language perform better compared to those who do not have the opportunity to practice the language in social environments (Hanzawa, 2024; Zhao & Lai, 2023). Moreover, Vygotsky (1978) emphasized that the Zone of Proximal Development (ZPD) of a learner requires scaffolding method where teachers guide students through relevant and appropriate task design until they can complete them independently (Alghamdy, 2024). Therefore, consistent exposure to language and relevant social experiences are essential for successful language learning. In that case, VR has been an influential technological tool that provides much experience and exposure to the global language.

The Teaching of English Verbal Communication Skills from CALL To RALL

Previously, teachers employed repetition of drills and memorization of dialogues to allow learners to practice speaking. Studies by Aini Khoyimah et al. (2020) and Jones (1997) have demonstrated that students’ speaking skills can be enhanced through repetition drills and memorization. However, according to research by Novayana (2018), these methods have their limitations as language acquisition does not solely occur through habit formation. Several other researchers have also argued that these methods do not effectively enhance long-term communicative abilities. Meanwhile, in the communicative language teaching method, the focus on accuracy has been minimized, and fluency has been highly regarded in learners’ acquisition of communicative competency (Albino, 2017). Since then, the teaching of speaking and listening skills has shifted to authentic methods such as meaning-based dialogues (Morales & Beltrán, 2006), group work (John, 2017; Abdullah, 2016), and various other language activities. When Krashen (1987) claimed that fluency is not achieved through speaking and listening drills but rather through comprehensible input, other scholars such as Swain (1985) argued that language acquisition occurs only through interaction among individuals in various social situations. Today, considering both comprehensible input and social interaction, the teaching of communication skills employs creative and authentic methods to help learners achieve their communicative goals.

Over the years, the methods for teaching verbal communication skills have evolved significantly. Initially, educators relied on outdated technologies like radio, television, CD-ROMs, and computers to teach speaking and listening skills. With the rise of Computer-Assisted Language Learning (CALL), teachers faced a new era in education. They embraced computers as tools to enhance students’ language abilities (Asrifan et al., 2020). As technology advanced, educators explored new tools like learning management systems, interactive whiteboards, and mobile devices to foster communication skills (Robinson et al., 2019), where Mobile-Assisted Language Learning (MALL) gained traction among educators, with smartphones and tablets playing a crucial role. For example, a systematic review was conducted on MALL integration in Malaysia and the review revealed that most studies focused on the positive impact of MALL on students’ English acquisition and performance. Additionally, a meta-analysis of 20 studies involving 932 participants found that MALL technologies significantly enhance foreign language learners’ speaking skills compared to traditional methods (Li, 2024).

Recently, Robot-Assisted Language Learning (RALL) and immersive technologies like Augmented Reality (AR) and Virtual Reality (VR) have entered the scene, offering innovative
teaching methods. For instance, AR technology in pedagogy, such as “smart pictorial dictionary”, effectively engages children and enhances their learning and memorization, even in a short time. Moreover, a study involving 39 respondents from a rural secondary school in Malaysia found that most respondents preferred the VR environment due to its interactivity and novel experience, which enhanced their motivation and interest in learning English (Muhammad, 2023). Besides, studies have proven that the use of VR in teaching language skills provides learners with immersive experiences and a highly interactive environment as well as unlimited opportunities to practice language skills effectively (Robbani et al., 2024; Parmaxi, 2023; Al-Farsi et al., 2021; Adnan et al., 2020). This way would allow learners from all levels to revise and upskill themselves at their own pace without barriers such as anxiety, stage fear, crowd fear and slow learning. Overall, these advancements not only improve language education but also equip students for a world increasingly influenced by immersive technology (Meniado, 2023).

The literature review reveals that while there is abundant descriptive research, there is a scarcity of experimental studies investigating the effects of VR on the enhancement of English verbal communication skills. Therefore, this study fills a research gap by highlighting the need for more empirical research to explore how VR can improve ESL learners’ English verbal communication skills.

Methods

The researchers employed the case study approach because it is a powerful and versatile tool for investigating phenomena within their natural settings. Its significance lies in its ability to provide rich, in-depth insights into complex real-world situations, which could offer a comprehensive understanding (Schoch, 2020). The research questions in this study require a great knowledge of the impact of VR in developing learners’ verbal communication skills. Thus, the adoption of quantitative methods is the ultimate effort to produce valid and vivid interpretations and conclusions.

To address the research questions, RQ 1 (How does the implementation of the ImmerseMe VR platform impact the development of ESL learners’ English verbal communication skills, particularly in terms of fluency and accuracy?), and RQ 2 (To what extent does VR-based learning of English verbal communication skills enable the development of participants’ communicative competence in English, during the speaking assessment?), quantitative design proved to be the most appropriate. Quantitative data collection methods, such as progress scores generated by ImmerseMe, as well as a pre-test and post-test design, were employed in this study. These quantitative components offer empirical evidence of the relationship between VR-based learning and the development of language skills, especially English verbal communication skills.

Participants

In this study, a Chinese Independent High School, with the academic year of 2022/2023 was chosen as the research site. The decision to opt for a school aligns with the researcher’s existing access to the institution which helped facilitate seamless and continuous involvement throughout the study. More importantly, the school is highly equipped with technological resources and facilities. The school is well-equipped with spacious rooms, reliable internet connection, and VR headsets with audio capabilities. The school authorities granted permission to research since the researcher was a staff member of the school.
The study employed a purposive sampling strategy to describe a particular context in depth, not to generalize to another context or population. The participants were purposively selected based on several criteria for the quantitative approach. First, the participants chosen were from the Senior 3 (Form 6) stage as they are pre-tertiary students, pursuing their studies at higher education institutions (HEIs), and some may choose to work. However, each of them understands the importance of English verbal communication skills for their future use. The selected participants were male and female students with Chinese as their first language.

Second, the researcher selected students from the same class levels where specific VR-integrated lessons and activities would be conducted. The selection of students from the same level ensured that the participants would gain the same experiences of using VR to develop their verbal communication skills. To further justify the chosen sample, participants were identified through their average oral proficiency, as assessed by the national oral assessment (Sijil Pelajaran Malaysia SPM Speaking Assessment, the results were indicated as pre-test scores). This ensured that the selected participants had a common baseline in language proficiency. Additionally, the chosen participants shared a commonality in having prior experience handling VR headsets during the pilot test involving 166 participants. Based on the selection criteria, fifteen (15) participants were chosen for this study to capture a detailed study on the effectiveness of the VR platform (ImmerseMe) and its impact on their speaking assessment.

Research Instruments

Data collection in this study involved quantitative instruments. Pre-test and post-test scores from speaking assessment and progress report from ImmerseMe were used to capture the effectiveness of VR technology among the learners. The research instruments utilized to seek the answers to the research questions were the speaking assessment scale, and response accuracy results in the ImmerseMe progress report.

For the VR intervention, mobile phones and VRG (reasonable Virtual Reality glasses) as well as ImmerseMe VR platform (https://my.immerseme.co/teacher/group/9923). To save time and get a reliable tool to be utilized in the study, the well-prepared ImmerseMe VR application was chosen for the study and ensured that the topics chosen were aligned with the school syllabus.

ImmerseMe was founded by Scott Cardwell in 2015 with an initiative to provide language teachers with a variety of practical lessons to enhance learners’ speaking and pronunciation skills through interactions with virtual objects and avatars. This platform enables students to communicate easily with avatars in a simulated real-life environment such as buying beverages from a store, interviewing, inquiring about the product, planning a holiday and other communicative situations. The lessons have been designed creatively and interactively to cater to the learners based on their proficiency level (beginner, intermediate, advanced). Basically, it is a tool that learners use to practise and enhance their fluency and accuracy in a real-life scenario by connecting with the outside world instead of having learning practices in four walls of a classroom.

In the beginning, the teacher selected lessons which were aligned with the school syllabus. The topics chosen for the 8-week lessons were Lesson 1: Checking in to a hotel, Lesson 2: order a coffee, Lesson 3: Reporting a stolen item, Lesson 4: Recommending a movie, Lesson 5: Deciding when to go on holidays, Lesson 6: Describing a traditional celebration, Lesson 7: Describing a good environmental practice, and Lesson 8: Reaching conclusions. The application has been set up with prerecorded interlocutors for each conversation. Students interacted with the interlocutors virtually and their responses were analyzed and graded by the application.
The Integration of Virtual Reality

The integration of VR is explained in chronological order as below.

Step One
Students logged in to the application, ImmerseMe (Figure One)

Figure 1. ImmerseMe log in page

Step Two
Students chose the target language. As this study focused on the enhancement of English verbal communication skills, learners chose the English language (Figure Two).

Figure 2. Target languages

Step Three
The teacher chose the lessons (situations) which were aligned with the current school syllabus, learners clicked on the required topic (Figure Three). Based on the oral test results, most of the participants are at the B1 level, thus the intermediate lessons were selected.
3. The title of the lessons according to the levels

Step Four
A lesson script appeared on the chosen title (Figure Four). This allowed participants to preview pronunciation, key vocabulary and key grammar before engaging into VR communication with the virtual character.

Step Five
Participants put on their Virtual Reality Glasses (VRG). Upon clicking the start lesson button, a 360-degree video representing a real-life interactive scenario (Figure Five) appeared. As the interlocutor spoke, his/her transcript appeared at the top of the screen. The participant then could choose a possible response and say it out loud. The participant’s speech was automatically
recorded and evaluated. The speech must match the expected pronunciation or else the learner must repeat the response until he/she pronounced it perfectly and satisfactorily.

Figure 5. Communication with the virtual interlocutor

Step Six
The researcher could track students’ progress in her dashboard (Figure Six). A thorough evaluation together with results on response accuracy appeared on the dashboard. The thorough evaluation included students’ accuracy in articulating sentence by sentence and overall completion. Along with that, personalized feedback (did the student go slow and produce highly accurate language? Did they rush and miss out on a few key sentences? Did they manage to complete a full dialogue in one go? Did they break it down) was provided for researchers’ further reference.

Figure 6. Teacher Dashboard (The scores of the participants appear here)

The eight weeks of lessons were successfully completed with the intended intervention. Although the were some technical barriers, the backup plans such as using laptops and personal computers in the ICT labs were helpful. The absentees during the intervention were able to complete the missed lessons on alternative days. In terms of manpower, the researcher was assisted not only by one assistant teacher, the other two assistant teachers came voluntarily to provide some essential assistance.
Data Analysis

RQ 1 was explored using the Progress Report generated by the ImmerseMe VR platform. The report was then analysed using statistical analysis. Meanwhile, RQ 2 which involved the speaking assessment scale was analyzed using pre-test and post-test scores statistically. A dependent sample t-test was performed to evaluate the effectiveness of VR on participants’ speaking proficiency.

Validity and reliability serve as cornerstones of methodological rigor, ensuring that research outcomes are credible, accurate, and meaningful (Johnson et al., 2020). For RQ 1, content validity was reported by ensuring that the Progress Report generated comprehensively reflects various dimensions of language acquisition, such as vocabulary usage, grammar proficiency, and conversational fluency, as facilitated by the VR platform. Similarly, for RQ 2, content validity was ensured by verifying that the speaking assessment scale effectively measures the intended constructs related to speaking proficiency. Meanwhile, to ensure face validity, experts assessed whether the Progress Report generated by the ImmerseMe VR platform and the speaking assessment scale appear to be appropriate tools for evaluating language learning progress and speaking proficiency.

Results

The results of the study were analysed based on two research questions.

Results for Research Question 1

RQ 1 is intended to address how the implementation of the ImmerseMe VR platform impacts the development of ESL learners’ English verbal communication skills in terms of pronunciation, fluency and accuracy. Thus, it gauges the effectiveness of the ImmerseMe VR platform across various conversational scenarios through an analysis of response accuracy.

Fifteen participants engaged in immersive VR lessons covering various conversational topics, and their accuracy scores were recorded. The analysis of participants’ response accuracy, as generated by ImmerseMe, is presented in percentages in Table One. Based on Table One, the response accuracy analysis revealed significant distinctions in participants’ performance in different conversational scenarios. Notably, Participant 8 consistently demonstrated high proficiency levels, achieving remarkable accuracy scores across most lessons, particularly excelling in recommending a movie and deciding when to go on holiday. On the other hand, Participants 2 and 13 struggled with lower accuracy scores, especially evident in scenarios involving reporting a stolen item and describing a traditional celebration.

Participants exhibited varying levels of accuracy across the different lessons (Table Two). Lesson 5, which involved describing a traditional celebration, was the most successful lesson, with a mean response accuracy of 79.07%. Conversely, Lesson 4, which required participants to decide when to go on holiday, demonstrated the lowest mean response accuracy at 50.87%. The discrepancy in performance suggests that participants may have encountered differing levels of difficulty or familiarity with the content of each lesson.

When considering the overall performance across all lessons, the participants achieved an average mean response accuracy of 67.55%. This indicates a moderate level of proficiency in responding to the language learning scenarios presented throughout the lessons.

Overall, participants demonstrated different degrees of improvement in pronunciation, fluency, accuracy, and confidence-building throughout the ImmerseMe VR lessons. Participants
like numbers 5 and 11 showed consistent progress across multiple lessons, demonstrating improved accuracy and confidence in their spoken English. On the contrary, participants like 3 and 7 faced challenges in maintaining accuracy and fluency, indicating areas for targeted intervention and support.

Table 1. *Response accuracy generated by ImmerseMe*

<table>
<thead>
<tr>
<th>Particpants</th>
<th>Lesson 1</th>
<th>Lesson 2</th>
<th>Lesson 3</th>
<th>Lesson 4</th>
<th>Lesson 5</th>
<th>Lesson 6</th>
<th>Lesson 7</th>
<th>Lesson 8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Checking in to a hotel</td>
<td>64</td>
<td>67</td>
<td>59</td>
<td>86</td>
<td>83</td>
<td>100</td>
<td>88</td>
<td>67</td>
</tr>
<tr>
<td>Order a coffee</td>
<td>45</td>
<td>76</td>
<td>17</td>
<td>36</td>
<td>100</td>
<td>50</td>
<td>84</td>
<td>78</td>
</tr>
<tr>
<td>Reporting a stolen item</td>
<td>55</td>
<td>56</td>
<td>56</td>
<td>26</td>
<td>67</td>
<td>33</td>
<td>45</td>
<td>65</td>
</tr>
<tr>
<td>Recommend ing a movie</td>
<td>65</td>
<td>54</td>
<td>43</td>
<td>32</td>
<td>57</td>
<td>66</td>
<td>54</td>
<td>76</td>
</tr>
<tr>
<td>Deciding when to go on holidays</td>
<td>78</td>
<td>84</td>
<td>87</td>
<td>56</td>
<td>64</td>
<td>45</td>
<td>45</td>
<td>77</td>
</tr>
<tr>
<td>Reporting a traditional celebration</td>
<td>54</td>
<td>56</td>
<td>65</td>
<td>40</td>
<td>56</td>
<td>40</td>
<td>44</td>
<td>63</td>
</tr>
<tr>
<td>Describing a good environment al practice</td>
<td>65</td>
<td>56</td>
<td>45</td>
<td>27</td>
<td>59</td>
<td>47</td>
<td>50</td>
<td>66</td>
</tr>
<tr>
<td>Reaching conclusions</td>
<td>89</td>
<td>88</td>
<td>100</td>
<td>70</td>
<td>100</td>
<td>76</td>
<td>67</td>
<td>86</td>
</tr>
<tr>
<td>Total score of the response accuracy</td>
<td>49</td>
<td>62</td>
<td>100</td>
<td>65</td>
<td>100</td>
<td>78</td>
<td>68</td>
<td>78</td>
</tr>
</tbody>
</table>

Throughout the intervention, participants showed varying levels of accuracy across different lessons as indicated in Table Two.

Table 2. *Average response accuracy*

<table>
<thead>
<tr>
<th>Lessons</th>
<th>Total score of the response accuracy</th>
<th>Average response accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(64 + 45 + 55 + 65 + 78 + 54 + 65 + 89 + 54 + 67 + 56 + 56 + 55 + 78 + 51) / 15</td>
<td>63.47%</td>
</tr>
<tr>
<td>2</td>
<td>(67 + 76 + 56 + 54 + 84 + 56 + 56 + 82 + 45 + 88 + 57 + 45 + 76 + 67) / 15</td>
<td>66.07%</td>
</tr>
<tr>
<td>3</td>
<td>(59 + 17 + 56 + 43 + 87 + 65 + 45 + 100 + 100 + 65 + 100 + 44 + 63 + 79 + 100) / 15</td>
<td>66.47%</td>
</tr>
<tr>
<td>4</td>
<td>(86 + 36 + 26 + 32 + 56 + 40 + 27 + 70 + 65 + 46 + 67 + 33 + 44 + 60 + 66) / 15</td>
<td>50.87%</td>
</tr>
<tr>
<td>5</td>
<td>(83 + 100 + 67 + 57 + 64 + 56 + 59 + 100 + 100 + 78 + 73 + 58 + 88 + 78 + 71) / 15</td>
<td>79.07%</td>
</tr>
<tr>
<td>6</td>
<td>(100 + 50 + 33 + 66 + 45 + 40 + 47 + 76 + 71 + 67 + 65 + 56 + 72 + 65 + 54) / 15</td>
<td>59.33%</td>
</tr>
<tr>
<td>7</td>
<td>(88 + 84 + 45 + 54 + 45 + 44 + 50 + 67 + 68 + 45 + 63 + 44 + 77 + 62 + 70) / 15</td>
<td>60.80%</td>
</tr>
<tr>
<td>8</td>
<td>(67 + 78 + 65 + 76 + 77 + 63 + 66 + 86 + 78 + 98 + 67 + 62 + 86 + 77 + 100) / 15</td>
<td>76.60%</td>
</tr>
</tbody>
</table>

Results for Research Question 2

The RQ 2 (To what extent does VR facilitate the development of the participants’ pronunciation and fluency in English during an oral test?) involved a statistical analysis of pre- and post-test
scores from the oral assessments, referencing the Common European Framework of Reference for Languages (CEFR) Key Performance Measures (KPM, 2021). The KPM scales provided a standardized evaluation of participants’ speaking abilities, ranging from A1 (beginner) to C2 (proficient).

Before the VR intervention, all participants completed a pre-test assessment using the CEFR KPM scales to measure their baseline verbal communication skills. Following the pre-test, the participants underwent VR-integrated lessons using the ImmerseMe application for eight weeks. The intervention involved interactive language learning experiences in various simulated environments, where participants engaged in real-life communicative tasks. After the intervention, the same participants completed a post-test using the CEFR KPM scales to measure the change in their verbal communication skills. In Examining the impact of an 8-week VR intervention on English verbal communication skills, the analysis reveals distinct patterns among participants at different CEFR levels (Table Three).

Table 3. Oral test results before and after VR intervention

<table>
<thead>
<tr>
<th>Participants</th>
<th>Gender</th>
<th>Before VR (CEFR level)</th>
<th>After VR (CEFR level)</th>
<th>Difference between before and after VR (Score)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Male</td>
<td>A2</td>
<td>B4</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>Male</td>
<td>A2</td>
<td>B3</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>Female</td>
<td>B3</td>
<td>B4</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>Female</td>
<td>A2</td>
<td>A2</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>Female</td>
<td>B3</td>
<td>B3</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>Female</td>
<td>A2</td>
<td>B4</td>
<td>2</td>
</tr>
<tr>
<td>7</td>
<td>Male</td>
<td>B3</td>
<td>B4</td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>Female</td>
<td>B3</td>
<td>B4</td>
<td>1</td>
</tr>
<tr>
<td>9</td>
<td>Female</td>
<td>B3</td>
<td>B4</td>
<td>1</td>
</tr>
<tr>
<td>10</td>
<td>Male</td>
<td>A2</td>
<td>B3</td>
<td>1</td>
</tr>
<tr>
<td>11</td>
<td>Female</td>
<td>B3</td>
<td>B4</td>
<td>1</td>
</tr>
<tr>
<td>12</td>
<td>Male</td>
<td>A2</td>
<td>B4</td>
<td>2</td>
</tr>
<tr>
<td>13</td>
<td>Female</td>
<td>B3</td>
<td>B4</td>
<td>1</td>
</tr>
<tr>
<td>14</td>
<td>Male</td>
<td>B3</td>
<td>B4</td>
<td>1</td>
</tr>
<tr>
<td>15</td>
<td>Female</td>
<td>B3</td>
<td>B4</td>
<td>1</td>
</tr>
</tbody>
</table>

Table Four shows the summary of the oral test results. Initially, there were six participants out of 15 in the A2 category, indicating a significant number of learners with insufficient communicative competence. After the VR intervention, only one participant remained in the A2 category. Essentially, except for one participant, the five others demonstrated remarkable improvement, elevating their communicative competence to both B3 and B4 levels. Concurrently, the number of B3 participants decreased from 9 to 3 after the VR intervention. However, this reduction does not signify a decline in participant achievement. Instead, most of participants who initially were at the
B3 level progressed to the B4 level, a level none had reached during the pre-test phase. Notably, 11 participants achieved the B4 level in post-VR intervention, marking a significant success.

Table 4. Summary of the Oral Test Results

<table>
<thead>
<tr>
<th>CEFR levels (CEFR level)</th>
<th>Before VR</th>
<th>Percentage (%)</th>
<th>After VR</th>
<th>Percentage (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A2</td>
<td>6</td>
<td>40</td>
<td>1</td>
<td>6.666667</td>
</tr>
<tr>
<td>B3</td>
<td>9</td>
<td>60</td>
<td>3</td>
<td>20</td>
</tr>
<tr>
<td>B4</td>
<td>0</td>
<td>0</td>
<td>11</td>
<td>73.33333</td>
</tr>
<tr>
<td>Total</td>
<td>15</td>
<td>100</td>
<td>15</td>
<td>100</td>
</tr>
</tbody>
</table>

The pre and post-test scores were analyzed using statistical methods to determine the significance of changes in participants’ verbal communication skills. A paired sample T-test was used to compare pre and post-test scores. The statistical analysis of the pre and post-test scores determined the significant difference in participants’ verbal communication skills after the VR intervention. The results revealed the effectiveness of VR technology in developing ESL learners’ verbal communication skills. The presented analysis (Table Five and Table Six) involves the examination of the differences between pretest and post-test scores, focusing on Mean, Number of Participants (N), and Standard Deviation for distinct CEFR levels achieved by the participants before and after VR intervention.

Table 5. Difference * Pretest

<table>
<thead>
<tr>
<th>Difference Pretestb</th>
<th>Mean</th>
<th>N</th>
<th>Std. Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>A2</td>
<td>1.3333</td>
<td>6</td>
<td>.81650</td>
</tr>
<tr>
<td>B3</td>
<td>.8889</td>
<td>9</td>
<td>.33333</td>
</tr>
<tr>
<td>Total</td>
<td>1.0667</td>
<td>15</td>
<td>.59362</td>
</tr>
</tbody>
</table>

Table 6. Difference * Post-test

<table>
<thead>
<tr>
<th>Difference Post-test</th>
<th>Mean</th>
<th>N</th>
<th>Std. Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>A2</td>
<td>.0000</td>
<td>1</td>
<td>.0000</td>
</tr>
<tr>
<td>B3</td>
<td>.6667</td>
<td>3</td>
<td>.57735</td>
</tr>
<tr>
<td>B4</td>
<td>1.2727</td>
<td>11</td>
<td>.46710</td>
</tr>
</tbody>
</table>

According to Table Six, participants who attained CEFFR Level A2 exhibited a mean post-test difference of 0.0000. With only one participant at this level, statistical deviation is not applicable. This outcome suggests that, on average, participants at the A2 level did not experience a significant change in post-test scores. The factors that might have influenced this outcome were explored in the discussion part.

For participants who achieved CEFR Level B3, the mean post-test score difference of 0.6667 indicates an improvement. The standard deviation of 0.57735 reflects the variability in this improvement among the three participants. This implies that while there is an overall positive trend, the extent of improvement varies within this subgroup.

On the other hand, participants who attained Level B4 showcased a substantial mean post-test difference of 1.2727, indicating a notable positive change in post-test scores. With a more

Arab World English Journal
www.awej.org
ISSN: 2229-9327
significant number of eleven participants, the standard deviation of 0.46710 suggests a relatively consistent improvement across this level. The findings indicate a significant and uniform impact on verbal communication skills among participants at the B4 level.

Examining pre-test to post-test differences, participants at CEFR Level A2 demonstrated a mean difference of 1.3333, indicating a substantial average improvement. The standard deviation of 0.81650 reveals variability in this improvement among the six participants at this level. Meanwhile, participants at CEFR Level B3 exhibited a mean improvement of 0.8889 from pre-test to post-test scores, reflecting a positive change. The low standard deviation of 0.33333 suggests a relatively consistent improvement across the nine participants at this level. Considering the overall mean post-test difference across all levels, the total mean difference is 1.0667. With a total of fifteen participants, the standard deviation of 0.59362 provides insights into the variability of this improvement across the entire sample. This signifies an average positive change in post-test scores across all CEFR levels, underscoring the potential efficacy of the VR intervention in enhancing English verbal communication skills.

Table: Paired Samples Test

<table>
<thead>
<tr>
<th>Mean Difference</th>
<th>Std. Deviation</th>
<th>Std. Error Mean</th>
<th>95% Confidence Interval of the Difference</th>
<th>t</th>
<th>df</th>
<th>Sig. (2-tailed)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pretest - Posttest</td>
<td>-1.0667</td>
<td>.50362</td>
<td>.15327</td>
<td>-1.39640</td>
<td>-.73793</td>
<td>-6.059</td>
</tr>
</tbody>
</table>

Figure 7. Paired samples test

In addition, a paired samples t-test was conducted to assess the significance of differences between pretest and post-test scores across all participants. The results present a comprehensive picture of the overall impact of the Virtual Reality (VR) intervention on English verbal communication skills. The mean difference between pretest and post-test scores is -1.06667. This value suggests an overall decrease in scores, indicating improvement in participants’ English verbal communication skills after the 8-week VR intervention. The standard deviation of 0.59362 represents the variability in the observed differences. This moderate level of variability suggests that while there is a general trend of improvement, individual responses to VR intervention improved. The p-value (Sig. 2-tailed) is .000, which is less than the conventional significance level of .05. This extremely low p-value suggests strong evidence against the null hypothesis. Hence, there is a significant difference in participants’ verbal communication skills before and after VR intervention in ESL classrooms.

Discussion

Research Question 1

The results showed that participants demonstrated varying levels of accuracy across the eight weeks of lessons. Based on existing literature on language learning, the results can be interpreted as the consequence of factors related to several attributing factors such as task complexity, language proficiency level, individual learners, individual differences in learning
ability, varied cognitive load, unfamiliarity with complex vocabulary and pronunciation, and prior knowledge or experience (Yudintseva, 2023; Chocarro et al., 2023; Bailey et al., 2021; Getie, 2020; Nambiar et al., 2020; Yang et al., 2020). Generally, these factors affect learners in acquiring language structures which may end up in inconsistencies in their performance. Thus, the varying levels of accuracy observed in this study reflect differences in terms of complexities in the lessons encompassing various scenarios.

Conversely, participants who achieved higher scores across lessons may possess strengths such as strong vocabulary retention, effective communication strategies, and the ability to comprehend and apply language structures in context. As explored in the literature review, individuals with these strengths usually demonstrate higher language proficiency and confidence in expressing themselves in the target language (Utami & Wahyudin, 2022). Meanwhile, participants who scored lower may face issues such as limited vocabulary, difficulty understanding complex language structures, and challenges with fluency and accuracy. These weaknesses might be rooted in the learners due to insufficient exposure to the target language, lack of practice opportunities, or difficulties in processing linguistic input from native speakers as highlighted in the existing literature (Alrasheedi, 2020).

Finally, the various levels of accuracy observed across lessons might also connect to differences in task difficulty and engagement levels. Lessons that stimulated higher accuracy rates may have involved topics or scenarios that were more familiar or personally relevant to participants, thus increasing their motivation and engagement, which led to better performance. On the other hand, lessons with lower accuracy rates may have included challenges in comprehending or producing proper linguistic structures, resulting in decreased motivation and effort from the learners. Hence, task design and relevance in enabling language learning and learner engagement is crucial as emphasized by Vygotsky’s Zone of Proximal Development (Alghamdy, 2024).

In conclusion, the discussion of the findings highlights the complex relationship between factors and participant performance in language learning tasks. Adopting a learner-centered approach to instruction that addresses individual strengths, weaknesses, and engagement levels can foster a supportive and inclusive language learning environment to maximize language acquisition outcomes.

Research Question 2

The findings from the 8-week Virtual Reality (VR) intervention present a clear perspective on its impact on English verbal communication skills among participants at different CEFR levels gauged through SPM Oral Test scales. The observed patterns and variations across CEFR levels offer valuable insights into the effectiveness of VR intervention. In analyzing the mean scores, the absence of a significant mean post-test difference (0.0000) for a participant who achieved CEFR Level A2 raises intriguing questions. Specific circumstances have influenced the lack of change in this particular participant.

Various factors, encompassing both internal and external challenges, could have affected the participant’s ability to showcase improvement during the intervention period. Among the factors that might have influenced the performance of this particular participant are challenges in comprehending oral test questions, a lack of readiness for the oral test, domination of the other candidate during the oral test, health issues during the oral test, mental pressure or stress from external factors such as peer and family, and other factors which affected the participants to show
no progress in the oral test. Alrasheedi (2020) highlighted that affective factors impacting students’ performance in speaking skills are shyness, peer pressure, anxiety, and fear of making mistakes. Similarly, Grieve et al. (2021) emphasized that ESL learners have certain challenges in performing oral presentation assessments. They underscored factors such as fear of being judged, physical symptoms, uncertainty about the topic, adverse effects on the institution’s experience, lack of practice and preparation, and inadequate practical support, leaving negative effects on learners’ education experience. Also, Aydin et al. (2020) supported that language learners suffer from test anxiety due to certain factors such as physical problems, problems related to tests, and affective problems. Hence, it can be presumed that the participants who attained A2 before and after VR intervention might be affected by any other external factors.

In contrast, the improvement shown by the other 5 participants who only attained CEFR Level A2 at pre-test stage represents a substantial positive change among participants, highlighting the effectiveness of VR technology in enhancing their verbal communication skills. The exposure to the authentic language practice provided by the VR immersive simulations was the key factor of this significant improvement in the results. Similarly, 8 out of 9 participants who achieved B3 level in the pre-test stage made a tremendous leap to B4 after the VR intervention in their verbal communication practice. The low variability suggests that the VR intervention had a more uniform impact on learners at the B3 proficiency level. Hence, the significant increase in B4 level participants highlights the success of the VR intervention. As highlighted in the literature, VR offers learners immersive experiences and a highly interactive environment while providing unlimited opportunities to practice language effectively as well as allowing them to improve and refine their skills at their own pace (Robbani et al., 2024; Parmaxi, 2023; Al-Farsi et al., 2021; Adnan et al., 2020).

Overall, participants made improvements in mastering English verbal communication skills with adequate exposure to the language and constant practice on VR platform. The use of VR technology proved a great impact on second language learners by enhancing their English verbal communication skills.

Conclusion

The main aim of the study is this study aims to investigate the impact of integrating VR-based language learning in English as A Second Language (ESL) classrooms for the development of verbal communication skills among secondary school students. Through a quantitative approach, two research questions were examined, highlighting the impact of VR technology on the enhancement of the English verbal communication skills of the participants.

Research Question 1 delved into how the ImmerseMe VR platform impacts ESL learners’ English verbal communication skills, focusing on fluency and accuracy. The study evaluated learners’ progress and proficiency by analyzing their responses in different conversational scenarios. This highlighted VR’s potential to positively influence language learning. Research Question 2 aimed to gauge how VR technology aids in developing participants’ communicative competence in English during oral tests. Through thorough analysis, the study found a significant difference in participants’ verbal communication skills before and after VR intervention in ESL classrooms. These results emphasize VR’s effectiveness in improving language proficiency and communicative competence among learners.
 Limitations and Recommendations
The major limitation of this study is the relatively small sample size and potentially homogenous participant demographics. The findings may lack generalizability to more extensive populations or diverse learner groups. Next, the study was conducted within a specific educational setting, which may limit the transferability of the findings to other settings. Moreover, in terms of technology usage, participants’ responses were limited due to challenges related to technical issues. Hence, future research with more diverse samples could provide a more comprehensive knowledge of the phenomena under investigation. Additionally, exploring participants’ insights through qualitative methods would expand the understanding of the effectiveness of VR-based language learning in developing communication skills.

In conclusion, this study underscores the transformative potential of VR technology in English language education, providing insights into its effectiveness and optimizing strategies. By addressing the research questions comprehensively, this study contributes to the growing body of literature on VR integration in language learning. It highlights its significance in enhancing language acquisition among Malaysian secondary school students.

Funding:
This paper has been published with the support of the Faculty of Education, National University of Malaysia, Grant Number: GG-2024-012.

Acknowledgment:
I would like to express my sincere gratitude to all individuals who contributed to the completion of this study. Special thanks to Mr. Scott Cardwell, the Co-founder and CEO of ImmerseMe.com, a VR-based language education company, who generously allowed me to use the platform for research purposes.

Conflicts of Interest: The authors declare no conflict of interest.

Authenticity: This manuscript is an original work

Artificial Intelligence Statement: AI and AI-assisted technologies were not used.

About the authors:
Kumutha Raman
Kumutha Raman is a lecturer at the Faculty of Education and Liberal Arts, Inti International University, Nilai, Malaysia, and final year of PhD student in National University of Malaysia. Her fields of interest include technology-enhanced language learning, and innovative teaching and learning. She has a language teaching experience of 12 years in a Chinese Independent High School, Seremban, Malaysia. ORCID ID: https://orcid.org/0009-0007-6630-8883

Dr. Harwati Hashim
Harwati Hashim, PhD., is an associate professor at the Centre for Innovation in Teaching and Learning, Faculty of Education, Universiti Kebangsaan Malaysia (UKM). Her areas of concentration are mobile learning, Mobile-assisted Language Learning (MALL), technology
acceptance as well as innovative pedagogy and the use of technology in teaching and learning English as a Second Language (ESL). ORCID ID: https://orcid.org/0000-0002-8817-427X

Dr. Hanita Hanim
Hanita Hanim Ismail (Ph.D) is a Senior Lecturer at the Centre for Innovation in Teaching and Learning, Faculty of Education, Universiti Kebangsaan Malaysia (UKM). She studies the theories and practices of English literature and the Teaching of English as a Second Language (TESL). Ismail is interested to understand and explore issues of identity, ranging from religious to gender aspects, particularly those concerning the English and the learning of the language. ORCID ID: https://orcid.org/0000-0003-3121-8822

References
Asrifan, A., Zita, C. T., Vargheese, K. J., Syamsu, T., & Amir, M. (2020). The Effects Of Call (Computer Assisted Language Learning) Toward The Students’ English Achievement and
Exploring the Impact of VR Integration on ESL Learners’ English

Raman, Hashim & Ismail

Arab World English Journal (AWEJ) Special Issue on CALL Number 10. July 2024

Attitude. *Journal of advanced English studies*, 3(2), 94-106. Available at http://dx.doi.org/10.47354/jaes.v3i2.88

Aydin, S., Akkaş, F. D., Tünnük, T., Beydilli, A. B. & Saydam, İ. (2020). Test anxiety among foreign language learners: A qualitative study. *Qualitative Report* 25(12) 4290-4309. Available at https://pdfs.semanticscholar.org/86ff/ec1f96a57c099669b0e147ac84b3fe13ee6e.pdf

https://doi.org/10.32996/ijllt.2023.6.1.8

hlps://doi.org/10.1002/9781119867647.ch4

Appendices

Appendix A

Research Instrument: Speaking Assessment Scale

<table>
<thead>
<tr>
<th>No</th>
<th>Candidate name</th>
<th>Index number</th>
<th>Overall Spoken Performance (Max 6)</th>
<th>Total Marks (Max 6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td>1 2 3 4 5 6</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td>1 2 3 4 5 6</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td>1 2 3 4 5 6</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td>1 2 3 4 5 6</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td>1 2 3 4 5 6</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td>1 2 3 4 5 6</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td>1 2 3 4 5 6</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td>1 2 3 4 5 6</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
<td>1 2 3 4 5 6</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td>1 2 3 4 5 6</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
<td></td>
<td>1 2 3 4 5 6</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
<td></td>
<td>1 2 3 4 5 6</td>
<td></td>
</tr>
</tbody>
</table>

© ES 2021 22 For examiner use only

<table>
<thead>
<tr>
<th>No</th>
<th>Candidate name</th>
<th>Index number</th>
<th>Grammar (Max 6)</th>
<th>Vocabulary (Max 6)</th>
<th>Communicative Competence (Max 6)</th>
<th>Total Marks (Max 18)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td>1 2 3 4 5 6</td>
<td>1 2 3 4 5 6</td>
<td>1 2 3 4 5 6</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td>1 2 3 4 5 6</td>
<td>1 2 3 4 5 6</td>
<td>1 2 3 4 5 6</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td>1 2 3 4 5 6</td>
<td>1 2 3 4 5 6</td>
<td>1 2 3 4 5 6</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td>1 2 3 4 5 6</td>
<td>1 2 3 4 5 6</td>
<td>1 2 3 4 5 6</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td>1 2 3 4 5 6</td>
<td>1 2 3 4 5 6</td>
<td>1 2 3 4 5 6</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td>1 2 3 4 5 6</td>
<td>1 2 3 4 5 6</td>
<td>1 2 3 4 5 6</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td>1 2 3 4 5 6</td>
<td>1 2 3 4 5 6</td>
<td>1 2 3 4 5 6</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td>1 2 3 4 5 6</td>
<td>1 2 3 4 5 6</td>
<td>1 2 3 4 5 6</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
<td>1 2 3 4 5 6</td>
<td>1 2 3 4 5 6</td>
<td>1 2 3 4 5 6</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td>1 2 3 4 5 6</td>
<td>1 2 3 4 5 6</td>
<td>1 2 3 4 5 6</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
<td></td>
<td>1 2 3 4 5 6</td>
<td>1 2 3 4 5 6</td>
<td>1 2 3 4 5 6</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
<td></td>
<td>1 2 3 4 5 6</td>
<td>1 2 3 4 5 6</td>
<td>1 2 3 4 5 6</td>
<td></td>
</tr>
</tbody>
</table>

© ES 2021 24 For examiner use only
Appendix B

Speaking Assessment Scale Indicators

<table>
<thead>
<tr>
<th>Bandscore</th>
<th>Overall Spoken Performance</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Can understand questions and instructions directed at him/her with ease. Can ask and respond to questions and suggestions, including those on abstract and complex topics. Can maintain and develop the interaction, compensating for gaps in their own vocabulary of grammar knowledge or of the other candidate. Can produce extended relevant stretches of language, with very little prompting or support.</td>
</tr>
<tr>
<td>5</td>
<td>Can understand questions and instructions directed at him/her with ease. Can maintain and develop the interaction by asking and responding to questions and suggestions on familiar matters using longer responses despite hesitation while searching for patterns and expressions. Requires very little prompting and support.</td>
</tr>
<tr>
<td>4</td>
<td>Performance shares features of Bandscores 3 and 5.</td>
</tr>
<tr>
<td>3</td>
<td>Can understand questions and instructions directed at him/her though will sometimes have to ask for repetition of particular words and phrases. Can maintain the interaction by asking and responding to questions and suggestions on familiar matters in a simple and direct way. Requires some prompting and support.</td>
</tr>
<tr>
<td>2</td>
<td>Performance shares features of Bandscores 1 and 3.</td>
</tr>
<tr>
<td>1</td>
<td>Can understand questions and instructions directed at him/her slowly, directly and repeatedly. Can give basic information on familiar topics using short phrases. Requires prompting and support.</td>
</tr>
<tr>
<td>0</td>
<td>Candidate does not produce sufficient language to be assessed. Candidate repeatedly uses language(s) other than English.</td>
</tr>
</tbody>
</table>

Recording of tests (for monitoring)

If you are recording your test then you must make sure the recording is clear and ready for submission beforehand. Candidate IDs and Examiner IDs must be clearly indicated in the audio sample you submit for monitoring purposes. For example, This is [John Smith as Interlocutor], Joan Smith as assessor, with (Candidate A + index number) ... and (Candidate B + index number) etc at the start of the recording.

Marking Checklist

When the test is finished, the assessor checks that the interlocutor has two Overall Spoken Performance marks: “Do you have two marks for Overall Spoken Performance?”

- Interlocutor then physically checks and answers: “Check.”
 - The interlocutor then asks the assessor: “Have you got two marks for Vocabulary?”
 - Assessor then physically checks and answers: “Check.”
 - The interlocutor then asks: “Have you got two marks for Communicative Competence?”
 - Assessor then physically checks and answers: “Check.”

Note: the assessor and interlocutor must check that candidate IDs and candidate IDs etc. are correct on their documentation before moving on.

Timing of test: Part 1 (3-4 minutes), Part 2 (3-4 minutes), Part 3 (4-6 minutes)